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Abstract—This paper addresses the mathematical modelling
of the relationship between the free surface elevation (FSE) and
the excitation force for wave energy devices (excitation force
model). While most studies focus on the model relating the
FSE to the device motion, the excitation force model is required
to complete the mathematical wave energy system description
and also plays an important role in excitation force observer
design. In the paper, a range of linear and nonlinear modelling
methodologies, based on system identification from numerical
wave tank tests, are developed for a range of device geometries.
The results demonstrate a significant benefit in adopting a
nonlinear parameterisation and show that models are heavily
dependent on incident wave amplitude.

Index Terms—Excitation force, System identification, Numer-
ical wave tank, Wave energy, Discrete-time modelling, ARX
model, Hammerstein model, Kolmogorov-Gabor Polynomial
Model

I. INTRODUCTION

Mathematical modelling of wave energy converters (WECs)
has many uses, including simulation of device motion, power
production assessment and as a basis for model based control
design. A large number of models employed in the simulation
and analysis of WECs are based on the Cummins equation
[1]. Cummins’ equation is based on Newton’s second law
describing the motion of the device floating in water subjected
to the fluid, gravity and other external forces (like the mooring
force, fM , and the PTO force, fPTO). The fluid force is
derived under the simplifying hypothesis of linear potential
theory, that allows the total fluid force (applied from the
fluid to the floating body) to be written as the summation
of the excitation force, fE , the radiation force, fRAD, and the
buoyancy force, fBU , and to express the radiation force as a
convolution integral. Therefore, the structure of the model can
be graphically represented using the block diagram of Fig. 1,
where fIN = fM+fE+fPTO represents the right hand side
of the Cummins equation [2].

When the body is in motion, the excitation force is not
directly measurable; however, the excitation force is a vital
variable required by energy maximising control systems [3]
and, in the absence of a direct measurement, a suitable estimate
is required, which can be provided by an observer [4]. In a
typical observer configuration, [5], a model linking the input
with the variable to be estimated (documented in this paper),
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Fig. 1. General block diagram of the wave energy device model.

along with the model linking the variable to be estimated with
the system output (see, for example [6]) needs to be provided.
In this paper, the attention is focused on the modelling of
the relationship between the undisturbed free surface elevation
(FSE), η, measured in a position that corresponds to the centre
of mass of the body, and the excitation force, that is the
force experienced by the body when it is held fixed in the
presence of waves [7]. This relationship is represented by the
”Excitation force kernel” block in Fig. 1.

In the context of linear models, the relationship between η
and fE can be described in the time domain via a convolution
integral or, in frequency domain, with a transfer function [8].
Linear models have very desirable properties, like superpo-
sition or a frequency domain description, but they are based
on the hypothesis of small waves, ideal fluid (inviscid and
incompressible) and small body displacement, that are not
satisfied in reality for the wave energy context. Consequently,
when the wave amplitude increases, becoming of the same
order of magnitude of the dimensions of the body, some
nonlinear effect may appear. As an example, Fig. 2 shows
the excitation force experienced from a fixed body subjected
to monochromatic waves; it is shown that, despite the fact
that the sinusoidal input is symmetrical with respect to the
mean free surface elevation (MFSE), the excitation force is
asymmetric. Furthermore, Fig. 3 shows that there is a nonlinear
relationship between the incident wave and excitation force
amplitudes. Such typical nonlinear effects are an indication
that it is necessary to introduce nonlinearities into the models
utilised to describe the interaction between the body and the
fluid.



Fig. 2. Regular FSE and excitation force time series.
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Fig. 3. Max excitation force amplitude vs (max wave amplitude)/(Device
heigth).

Different studies have already been conducted to introduce
nonlinear effects into the calculation of the excitation force,
taking into consideration the fact that the wetted surface of the
body is not constant in time, as assumed by linear potential
theory, but changes depending on the FSE and the position of
the body. Therefore, the excitation force has been calculated
by integrating the pressure on the instantaneous wetted surface
of the body [9]–[12].

An alternative modelling approach, utilised in this paper,
is that of system identification, where models are determined
from input/output data measured from the system under study
[13]. Such methods are particularly useful where the system to
be modelled is very complex and/or does not easily lend itself
to first principles modelling. However, one major difficulty
in system identification is ensuring that the input/output data
used to determine the model is sufficiently representative of
the system dynamics and, in particular, must cover the range
of frequencies and amplitudes likely to be encountered during
system operation. In the WEC case, such a range of excitation
signals are not likely to be available in the open ocean (at
least not in a reasonably short time frame) and there are
difficulties in exactly enumerating the excitation experienced
by the device, particularly for a directional device. In short, in
the open ocean, there is no external control of the excitation.
One other possibility is to employ tank tests. However, in
addition to the significant cost and the need for a physical

prototype, there may be limitations on the range of excitation
signals available and tank wall reflections may further limit
the range and duration of viable tests.

A different option for generating suitable input/output data
is to use a numerical wave tank (NWT), implemented in CFD
[6], which has the following advantages :
- Reflections from tank walls can be effectively controlled,
- The device can be tested at full scale, eliminating scaling
effects,
- A wide variety of excitation signals, including incident waves
and forces directly applied to the device, as well as free
response tests, can be implemented,
- The device can be constrained to different modes of motion
without requiring mechanical restraints, which can add friction
and alter the device dynamics,
- Signals can be passively measured without requiring physical
sensor devices which can alter the device or fluid dynamics
and are subject to measurement error and, most importantly,
- Specialist equipment, including a prototype WEC device, is
not required.

In this paper, for simplicity, the general six degree of
freedom (DOF) problem has been reduced to a heave single
DOF. However, the illustrated methods and procedures can be
extended to the full six DOF.

The paper is laid out as follows; in Section II, the structure
of the proposed linear and nonlinear models are outlined. Sec-
tion III then explains the NWT experiments used to produce
the system identification data. Section IV describes the process
of identifying the model parameters from the NWT generated
data. Some illustrative examples demonstrating these methods
are then given in Section V, and the results of the different
models compared.

II. MODEL STRUCTURES

A. General Dynamic Model Structure

Choice of the parametric structure of the model is very im-
portant, if a representative model is to be identified. The model
structure may be inspired from physical system knowledge
and considerations (white-box modelling) or completely based
on the recorded data itself (black-box modelling). There are
also many possibilities within these two extremes which are
denoted by shades of grey e.g. off white, slate grey, smoke
grey, etc [14]. In general, whether the model structure is
inspired by physical phenomena or purely derived from the
data, it is necessary to determine a parsimonious structure
for the model which will work well with the identification
data, but also generalise well to other data. A compatible
requirement is that it is not desirable to add complexity to the
model for little gain. The identified parametric model should
be able to capture the essential nonlinearities, but remain,
simultaneously, with a sufficient simplicity that allows the
model to be run in real time.

Considering the discrete time nature of sampled data from
experiments, the majority of system identification techniques
are based on discrete time models [13]. For this reason,
discrete time models are utilised in this paper. However,
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Fig. 4. Block diagram for a general NARX discete-time model. Each D-
block denotes a single delay element. na, nb and nd indicate the number of
D-blocks.

identification of continuous time models can also be performed
[15] [16]. Discrete-time modelling implies using signals only
at the discrete time instants t = kTs, where Ts is the sampling
period and k is an integer. The values of the η and fE at the
time instant kTs are represented with the symbols η(k) and
fE(k) respectively.

The relationship between η and fE is non causal [8],
therefore, noncausality has to be introduced into the structure
of the identified model. In this paper, models with external
dynamics, called nonlinear autoregressive with exogenous
input (NARX) models [17], are utilized. In NARX models,
the present value of the output fE(k) depends on the past
values of the output fE(k − 1), ..., fE(k − na) and the input
values η(k − nd), η(k − nd − 1), ..., η(k − nd − nb). If the
system is causal, the output does not depend on future values
of the input and nd ≥ 0, otherwise, if the system is noncausal,
nd < 0 and the present value of the output is influenced by
future input values. The NARX model is summarized with the
following equation:

y(k) =g
[
fE(k − 1), ..., fE(k − na),

η(k − nd), η(k − nd − 1), ..., η(k − nd − nb)
]

(1)

which can be represented with the block diagram of Fig.
4. na and nb represent the dynamical order of the model,
and increasing them, the model becomes more flexible and
able to show more complex behaviour, but, at the same time,
unnecessarily high orders can make the model less able to
generalise on new data (overfitting). nd is the input delay time
and it represents the number of samples before the output
reacts to the input (for nd ≥ 0) or the number of future
input steps that influence the present value of the output (for
nd < 0).

B. ARX Model (Linear)

The first parametric model utilised in this paper is the
autoregressive with exogenous (ARX) model. It is a well
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Fig. 5. Block diagram of the Hammerstein model.

known black box model with a linear input-output relationship
and is linear in the parameters ai and bi. For the ARX model,
Equation (1) becomes:

fE(k) =

na∑
i=1

aifE(k − i) +
nb∑
i=0

biη(k − nd − i) (2)

C. Hammerstein Model (Nonlinear)

A way to introduce a nonlinearity into the relationship
between the input η(k) and the output fE(k) of the model
is to utilise a nonlinear static block. The Hammerstein model
consists of a cascade connection of a nonlinear static block
followed by a linear dynamic block (see Figure 5). In the
Hammerstein case, Equation (1) becomes [18]:

fE(k)=

na∑
i=1

aifE(k − i) +
nb∑
i=0

bir[η(k − nd − i)] (3)

where r[.] is a nonlinear static function. The Hammerstein
model is characterized by a nonlinear input-output relation-
ship, but is linear in the parameters ai and bi. In the Hammer-
stein model, the static relationship between input and output
is given by the product of the static function, r[.], and the
steady-state gain of the ARX model, DCgain. Therefore, the
characterization of the two blocks is not unique, any pair
(DCgain/α , αr) will produce the same input and output [19].
To remove this ambiguity, the DCgain of the ARX block is
set to unity, which allows the steady-state gain for the entire
Hammerstein model to be solely represented by the nonlinear
static function. In this case, r[η(k)] will represent the static
relationship between the constant input free surface elevation
and the constant output excitation force, which is just the
buoyancy force. Therefore, once the buoyancy force versus
constant wave elevation relationship is available, the nonlinear
static function, r[.], can be identified separately from the linear
dynamic block. In this way, the Hammerstein model black-box
structure is given a shade of ’grey’ by considering the physical
meaning of the nonlinear static function to be a representation
of the hydrostatic buoyancy force.

D. Kolmogorov-Gabor Polynomial Model (Nonlinear)

The final model considered in this paper utilises a poly-
nomial nonlinearity, which results in a Kolmogorov-Gabor
polynomial (KGP) model [17].



. In this case, Equation (1) becomes:

fE(k)=

na∑
i=1

ai1fE(k − i)+
nb∑
i=0

bi1η(k − nd − i)

+ ...

+

na∑
i=1

aipf
p
E(k − i)+

nb∑
i=0

bipη
p(k − nd − i)

+

na∑
i=1

nb∑
j=0

cijfE(k − i)η(k − nd − j)

+ . . . (4)

where p is the maximum polynomial order for the terms
involving η and fE alone, as well as the cross-product terms.

The KGP model is a black box model having a nonlinear
input-output relationship, but is linear in the parameters aij ,
bij and cij .

During the preparation of the present work, the presence of
the cross-product terms in the model typically resulted in an
instability in the identified KGP model. For this reason, the
cross-product terms in the model of Equation (4) have been
removed, obtaining the simpler model:

fE(k) =

p∑
j=1

[ na∑
i=1

aijf
j
E(k−i)+

nb∑
i=0

bijη
j(k−nd−i)

]
(5)

The cancellation of the cross-product terms reduces the flex-
ibility of the KGP model in describing the different nonlinear
effects, nevertheless, the presence of the terms, involving η
and fE alone, guarantees the introduction of nonlinear effects
and an improvement with respect to the linear ARX model.

III. NUMERICAL WAVE TANK

The NWT in this study is based on the open-source CFD
software OpenFOAM. Details for the implementation of an
OpenFOAM NWT for wave energy experiments can be found
in [20].

A. NWT Experiments

Two different types of experiments are performed to provide
the model identification data: the NWT Dynamic Experiments
and the NWT Hydrostatic Force Experiments.

1) NWT Dynamic Experiment: This experiment involves
holding the body fixed in the presence of input waves and
measuring the resulting hydrodynamic force on the body.
The excitation force is given by removing the hydrostatic
force, experienced by the device at equilibrium, from the
total measured hydrodynamic force. In a NWT, like in the
open ocean or in a physical tank, measuring η at the WEC’s
centre of mass presents an issue, since the body occupies that
position. A possible solution is the employment of techniques
of spatial reconstruction of the wave field, using a group of
sensors located in the proximity of the floating body, like
LIDAR instruments or buoys [21]. In the NWT, the problem is
overcome by performing the experiment in two stages. First,
the input waves are generated and η at the desired position is
measured without the body in the tank (see Fig. 6-a). Next, the
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Fig. 6. NWT Hydrostatic Force Experiment: (a) the input waves are generated
and the FSE at the desired position measured without the body. (b) the same
input waves are generated but with the body geometry imported into the tank
and held fixed while the resulting hydrodynamic force is measured.

same input waves are generated, but with the body geometry
imported into the tank and held fixed, while the resulting
hydrodynamic force on the body is measured, (see Fig. 6-
b). Two vectors are produced by this experiment for model
identification, one containing the FSE, {ηd(k)}, and the other
the resulting excitation force, {fEd(k)}. Since this experiment
is used to identify the dynamic of the system under study, it is
important that the input signal {ηd(k)} has a rich frequency
content.

2) NWT Hydrostatic Force Experiment: This experiment is
used to identify the static curve of the Hammerstein model.
Two vectors are produced by this experiment for model
identification, one containing the FSE, {ηs(k)}, and the other
the resulting excitation force, {fEs(k)}. Since in the previous
NWT Dynamic Experiment the output signal {fEd(k)} shows
simultaneously the effects of the nonlinear static curve and of
the system dynamics, it is difficult to separate one effect form
the other one for the identification of the Hammerstein sub-
blocks. As explained in Section II-C, the static curve of the
Hammerstein model is related to the buoyancy force applied on
the floating body, therefore, it is possible to design a specific
experiment (the NWT Hydrostatic Force Experiment) to reveal
only the buoyancy characteristics of the floating body and use
them for the identification of the static curve. In this case,
differently from the NWT Dynamic Experiment, the input
signal {ηs(k)} has to be slow so that dynamic effects are
negligible and only the hydrostatic force is present in the
excitation force measurement. Ideally, the body is held fixed
and η is very slowly increased from the bottom to the top of the
body and the resulting hydrostatic force is measured. However,
in terms of implementing the experiment in the NWT, it is
easier to keep the water level constant and slowly submerge
the body, to obtain the same hydrostatic force measurements.



Fig. 7. System identification principle.

IV. MODEL IDENTIFICATION

A. System Identification

The fundamental idea of system identification is represented
in Fig. 7. The identification procedure is based on a sequence
of steps:
1) A parametric structure of the model is chosen (linear or
nonlinear),
2) A suitable input signal is applied to excite the system, and
3) Using the recorded input and output signals, an identi-
fication algorithm is used to determine the optimal model
parameters θ (the target is to minimize some error metric
between the measured output y and the output ŷ predicted
by the identified parametric model).

B. Linear Regression and Least Squares

Consider a model with an output, ẑ, that is a linear combi-
nation of p independent variables, xi:

ẑ = θ1x1 + · · ·+ θpxp (6)

where the coefficients, θi, are the unknown parameters [17].
It will be assumed that, i = 1..N data samples, {z(i)}, have

been measured. The error at each sample is ε(i) = z(i)− ẑ(i).
In matrix form:

ε = z− ẑ = z−Xθ (7)

where:
ε =

[
ε(1) ε(2) ... ε(N)

]T
, (8)

z =
[
z(1) z(2) ... z(N)

]T
, (9)

ẑ =
[
ẑ(1) ẑ(2) ... ẑ(N)

]T
, (10)

X =


x1(1) x2(1) ... xp(1)
x1(2) x2(2) ... xp(2)

...
...

. . .
...

x1(N) x2(N) ... xp(N)

 , (11)

θ =
[
θ1 θ2 ... θp

]T
. (12)

X and z, are called the data matrix and the observation vector
respectively. In a full column rank context, the estimated
parameters that minimize the least squares error are [17]:

θ̂ = argmin
θ

(εTε) = (XTX)−1XTz. (13)

The least squares problem is not usually resolved calculating
the solution directly from Equation (13), because the use of
XTX increases the possibility to obtain an ill-conditioned
problem (the condition number of XTX is approximately the
square of the condition number of the data matrix X). Instead,
a QR factorization method was implemented, which allows
computing the least square solution directly from X without
forming XTX [22] [23].

If the parameters have also to satisfy the linear equality
constraints Aθ = d, the estimated parameters are:

θ̂c = θ̂ −H−1AT (AH−1AT )−1(Aθ̂ − d), (14)

where H = XTX, and θ̂ is calculated via Equation (13) [17].

C. Time Delay and Dynamical Order Estimation (nd, na, nb)

An important part of the model structure selection is the
choice of the delay nd and the dynamical orders na and nb.
As Equation (1) suggests, y(k) is a function of na output and
nb+1 input values, taken at different time instants. Once na,
nb and nd are selected, it is possible to obtain the different
model structures (for this paper ARX, Hammerstein and KGP)
by changing the function g(). Since linear and nonlinear mod-
els share the same na, nb and nd, all these parameters are esti-
mated implementing a trial and error process on several ARX
models having different na, nb and nd and their performances
measured with a loss function (a measure of the modelling
error). For each ARX model estimation, independent training
and validation data sets are utilised. At the end, the simplest
ARX model able to repeat the validation data with a sufficient
accuracy is selected (parsimonious model) [24].

D. ARX Model Identification

Performing the NWT Dynamic Experiment (see Section
III-A), the signals {ηd(k)} and {fEd(k)} for i = 1...N ,
are generated, and they can be utilised as input and output
for the identification of the ARX model. The first possible
predicted model output is for k = τ + 1 (the first τ values
of the output data are utilised as initial conditions), where
τ = max{na, (nb + nd)}. The last possible predicted model
output is for k = Ñ , where

Ñ =

{
N if nd ≥ 0,
N + nd if nd < 0.

In this case, Equations (9), (11) and (12) become:

z =
[
fEd(τ + 1) fEd(τ + 2) ... fEd(Ñ)

]T
, (15)

X=


fEd(τ) ...fEd(τ+1−na) ηd(τ+1−nd)...ηd(τ+1−nd−nb)

fEd(τ+1) ...fEd(τ+2−na) ηd(τ+2−nd)...ηd(τ+2−nd−nb)
...

. . .
...

...
. . .

...
fEd(Ñ−1) ... fEd(Ñ−na) ηd(N) ... ηd(N−nb)


θ̂arx =

[
a1 a2 ... ana

b0 b1 ... bnb

]T
. (16)

respectively. The estimated parameters are determined from
Equation (13).



E. Hammerstein Model Identification
The first step, in the identification of the Hammerstein

model, is to identify the nonlinear static block. The nonlinear
static function can be approximated with a linear combination
of basis functions; in this way, it is possible to apply linear re-
gression for the identification. For simplicity, the selected basis
functions in this paper are polynomials {x0, x1, x2, ..., xnc}.
Therefore, the relationship between the input and the output
of the nonlinear static block is:

ŝ(k) = c1η(k) + c2η
2(k) + ...+ cnc

ηnc(k) (17)

where, c0 = 0 is imposed (if the FSE is zero, the applied
excitation force has to be zero). Under static conditions s(k) =
fE(k) (a consequence of the DCgain of the ARX equal to
one). Therefore, Equation (17) becomes:

f̂E(k) =

nc∑
i=1

ciη
i(k) (18)

The NWT Hydrostatic Force Experiment (see Section III-A)
generates the signals {ηs(k)} and {fEs(k)}, that can be
utilised as input and output for the identification of the
nonlinear static block. In this case, Equation (6) becomes
Equation (18) and Equations (9), (11) and (12) become:

z =
[
fEs(1) fEs(2) ... fEs(N)

]T
(19)

X=


η1s(1) η2s(1) ... η

nc
s (1)

η1s(2) η2s(2) ... η
nc
s (2)

...
...

. . .
...

η1s(N) η2s(N) ... ηnc
s (N)

 (20)

θ̂Hc =
[
c1 c2 ... cnc

]T
(21)

respectively. The estimated parameters are determined from
Equation (13). The identification of θ̂Hc is repeated for dif-
ferent values of nc, evaluating the fitting error of the static
function. Lastly, the smallest nc that leads to a fitting error
smaller than 3% is selected (as a good compromise between
parsimony and accuracy), together with the associated θ̂Hc.

In the second step, the ARX block is identified utilising
the signals {ηd(k)} and {fEd(k)}, generated with the NWT
Dynamic Experiment. Now that θHc is known, it is possible to
calculate the output {s(k)} of the nonlinear static block using
Equation (17). In this way, both the input and the output of the
ARX model is known, and it is therefore possible to identify
the ARX parameters θHARX

, under the constraint that the DC
gain of the ARX is equal to one: DCgain = (

∑nb

i=1 bi)/(1 +∑na

i=1 ai) = 1, which corresponds to an equality constraint on
the parameters A = [−1,−1, ...,−1, 1, 1, ...1] and d = 1. In
this case Equations (9), (11) and (12) become:

z =
[
fEd(τ + 1) fEd(τ + 2) ... fEd(Ñ)

]T
, (22)

X=


fEd(τ) ...fEd(τ+1−na) s(τ+1−nd)...s(τ+1−nd−nb)

fEd(τ+1) ...fEd(τ+2−na) s(τ+2−nd)...s(τ+2−nd−nb)
...

. . .
...

...
. . .

...
fEd(Ñ−1) ... fEd(Ñ−na) s(N) ... s(N−nb)



Fig. 8. Wave tank geometry.

θ̂Harx =
[
a1 a2 ... ana

b0 b1 ... bnb

]T
(23)

respectively. The estimated parameters are given from Equa-
tion (14).

F. Kolmogorov-Gabor Polynomial Model Identification

For the KGP model, the NWT Dynamical Experiment
signals are utilised, obtaining from Equations (9) and (12):

z =
[
fEd(τ + 1) fEd(τ + 2) ... fEd(Ñ)

]T
,

θ̂KGP=[a11,...,ana1,b01,...,bnb1,...,a1p,...,anap,b0p,...,bnbp]
T

Each of the (Ñ − τ) rows of the data matrix (11) has the
form: [fEd(k− 1), ..., fEd(k−na), η(k−nd), ..., η(k−nd−
nb), ..., f

p
Ed(k−1), ..., f

p
Ed(k−na), ηp(k−nd), ..., ηp(k−nd−nb)],

where k = (τ + 1), ..., Ñ .

V. ILLUSTRATIVE EXAMPLES

In this section, the methods described in Sections II- IV are
implemented on different test devices. The present case study
considers a two dimensional (2D) NWT, whereby the NWT
is one cell thick and symmetry planes are imposed on the
front and back faces of the domain. The 2D NWT is used to
allow a timely investigation of the optimal experiment design,
before moving to the much computationally slower 3D NWT
for real WEC geometries. The NWT is a 50m deep tank with
walls 100m from the device and with wave creation/absorption
implemented via the waves2FOAM package [25] utilising two
95m long relaxation zones situated 5m either side of the device
(see Fig. 8). Since two dimensional (2D) NWT simulations are
utilised, the geometries of the test devices are infinitely long
horizontal bars, having vertical cross-sections of a triangle, a
circle and a box, with the dimensions shown in Fig. 9. For
all the geometries, the draft is 50% of the device height. In
the context of 2D NWT simulations, the waves move along a
direction perpendicular to the infinitely long horizontal body
axis, therefore, no wave directionality effects on the body are
investigated.

A. Model Training and Identification

As illustrated in Section III-A, for the model identifica-
tion, two kinds of NWT experiments are performed for each
geometry, NWT Hydrostatic Force Experiment and NWT
Dynamic Experiment, generating output data vectors sampled
at Ts = 0.1s.
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Fig. 9. Test device geometries: box, circle and triangle. The dotted line
represents the mean free surface elevation (MFSE).

Fig. 10. Results from the NWT Static Force Experiment and fitting of the
Hammerstein’s static curves in case of triangle (nc = 2), circle (nc = 3) and
box (nc = 1).

The results from the NWT Static Force Experiments are
shown in Figure 10. Figure 10-(a) shows the FSE, starting from
the bottom of the device and slowly rising, until the device
is completely submerged. Figure 10-(b) shows the excitation
force on the body during this FSE change. Figure 10-(c) then
plots the excitation force as a function of the FSE, showing
the nonlinear nature of the relationship for the triangular and
circular geometries.

Figure 11 shows the fitting error of the static curves of the
Hammerstein models as a function of nc, and the identified
values of nc for the different geometries (nc equal to 1, 2 and 3
for box, triangle and circle respectively). Figure 10-(c) shows

Fig. 11. The fitting error of the static curve of the Hammerstein model for
different polynomial order nc. The smallest nc is chosen that guarantees
fitting error smaller than 3%. In case of the box, the static curve is a straight
line, therefore the fitting error is already zero for nc = 1
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Fig. 12. Training experiment T1.

TABLE I
IDENTIFIED na ,nb , nd , nc AND p FOR THE TRIANGLE, CIRCLE AND BOX

GEOMETRIES.

Geometry na nb nd nc p
Triangle 4 2 -8 2 2
Circle 3 2 -6 3 2
Box 3 2 -7 1 2

the fitting of the static curves of the Hammerstein models.
For the simulation of the NWT Dynamic Experiments,

two different sea states have been utilised, having Jonswap
spectra characterised by: (Hs = 1.5m, Tp = 10s) and
(Hs = 0.5m, Tp = 10s). Each sea state realization has been
obtained as multisine signal, consisting of 100 harmonics with
a fundamental frequecncy of 0.01Hz and selecting a random
phase for each harmonic.

For each sea state, four different realizations have been
generated (in total 8 realizations), and utilised with each
geometry (in total 24 experiments). The experiments involving
the triangle have been called Ti with i = 1, ...8, and similarly,
the symbols Ci and Bi have been utilised for the experiments
involving circle and box geometry respectively (see Tables II,
III and IV). Fig. 12 shows the experiment T1 utilised to train
the models for the triangular geometry, where it is possible to
see that, the FSE has been intentionally constructed in a way
so, that the device is never overtopped or dried out.

Utilising the strategy illustrated in Section IV-C, the input
delay time nd, and the dynamical orders na and nb have been
identified for the three geometries; the results are summarized
in Table I. In the case of the circular geometry, Fig. 13 shows
the loss function calculated for the different ARX models,
obtained by changing nd. It is possible to see that the minimum
value occurs for nd = −6 (noncausal ARX model). In Fig.
14 the loss function is plotted for different values of na, for
the case of circular geometry. It is possible to see that, for na
bigger than 3, the loss function has no significant reduction,
indicating that na = 3 is appropriate for the identification of
a parsimonious model.

The polynomial order of the KGP model p = 2 has been
identified, observing that bigger values of p improve the
training fitting but degrade the quality of the validation fitting
(overfitting).



Fig. 13. Determination of nd = −6, for the circle geometry.

Fig. 14. Determination of the dynamical order na = 3, for the circle
geometry.

Different error metrics can be utilised to compare the model
prediction f̂E(k) with the measured signal fE(k). A possible
choice could be the mean square error (MSE), but it is
not normalised with respect to the magnitude of fE(k). To
overcome this inconvenience, the mean absolute percentage
error (MAPE) could be chosen. However, drawback of this
error metric is that it can give a distorted picture of the error,
if there are zero or nearly-zero values in the measured signal.
Since fE(k) oscillates around zero, there is a good possibility
that it could happen. This leads to the definition of a new
metric, which we term normalised root mean-squared error
(NRMSE):

NRMSE =

√∑
k[fE(k)− f̂E(k)]2√∑

k f
2
E(k)

(24)

Fig. 15 shows, for experiment T1, the multi-step predictions
of the identified ARX, Hammerstein and KGP models. It
is possible to see that none of the modelling approaches
is perfect, but the linear model has particular difficulty in
following peaks in the excitation force. All the fitting results
on the training experiments are summarised in Table II, III and
IV for the triangle, circle and box, respectively. It is possible
to observe that, for all 24 experiments, in the case of training
fitting, the KGP model shown to be the best, followed by
the Hammerstein and finally the ARX model, confirming the
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Fig. 15. Identified model performances on the training experiment T1. The
multi-step model predictions are compared with the training data.

TABLE II
NRMSE MODELS MULTI-STEP PERFORMANCES FOR TRAINING

(TRIANGLE).

Training Experiment ARX Hammerstein KGP
Hs=1.5m ; Tp=10s ; (T1) 0.2336 0.1011 0.0891
Hs=1.5m ; Tp=10s ; (T2) 0.2388 0.1028 0.0972
Hs=1.5m ; Tp=10s ; (T3) 0.2705 0.1078 0.1060
Hs=1.5m ; Tp=10s ; (T4) 0.2488 0.1099 0.0960
Hs=0.5m ; Tp=10s ; (T5) 0.0915 0.0681 0.0450
Hs=0.5m ; Tp=10s ; (T6) 0.0819 0.0697 0.0483
Hs=0.5m ; Tp=10s ; (T7) 0.1017 0.0697 0.0506
Hs=0.5m ; Tp=10s ; (T8) 0.0803 0.0676 0.0421

presence of nonlinear effects in the data.

B. Model Validation

The simplest way to evaluate the accuracy of a model is to
identify it on training data, and then, evaluate its performance
on test data from a different experiment. A model, which fits

TABLE III
NRMSE MODELS MULTI-STEP PERFORMANCES FOR TRAINING

(CIRCLE).

Training Experiment ARX Hammerstein KGP
Hs=1.5m ; Tp=10s ; (C1) 0.1233 0.1135 0.0922
Hs=1.5m ; Tp=10s ; (C2) 0.1324 0.1151 0.0967
Hs=1.5m ; Tp=10s ; (C3) 0.1495 0.1228 0.1117
Hs=1.5m ; Tp=10s ; (C4) 0.1430 0.1222 0.1072
Hs=0.5m ; Tp=10s ; (C5) 0.0371 0.0351 0.0306
Hs=0.5m ; Tp=10s ; (C6) 0.0366 0.0366 0.0261
Hs=0.5m ; Tp=10s ; (C7) 0.0372 0.0359 0.0304
Hs=0.5m ; Tp=10s ; (C8) 0.0351 0.0340 0.0273

TABLE IV
NRMSE MODELS MULTI-STEP PERFORMANCES FOR TRAINING (BOX).

Training Experiment ARX Hammerstein KGP
Hs=1.5m ; Tp=10s ; (B1) 0.1311 0.1270 0.0961
Hs=1.5m ; Tp=10s ; (B2) 0.1294 0.1251 0.0914
Hs=1.5m ; Tp=10s ; (B3) 0.1368 0.1308 0.0952
Hs=1.5m ; Tp=10s ; (B4) 0.1259 0.1243 0.0917
Hs=0.5m ; Tp=10s ; (B5) 0.0531 0.0481 0.0463
Hs=0.5m ; Tp=10s ; (B6) 0.0591 0.0561 0.0477
Hs=0.5m ; Tp=10s ; (B7) 0.0547 0.0511 0.0493
Hs=0.5m ; Tp=10s ; (B8) 0.0537 0.0494 0.0448
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Fig. 16. Identified model performances on the validation experiment T2. The
multi-step model predictions are compared with the training data. The models
have been trained on the experiment T1.

TABLE V
NRMSE VALIDATION MULTI-STEP PERFORMANCES OF THE MODEL

TRAINED WITH THE EXPERIMENT T1 (TRIANGLE).

Validation Experiment ARX Hammerstein KGP
Hs=1.5m ; Tp=10s ; (T2) 0.2394 0.1017 0.0894
Hs=1.5m ; Tp=10s ; (T3) 0.2697 0.1071 0.1042
Hs=1.5m ; Tp=10s ; (T4) 0.2514 0.1084 0.0999
Hs=0.5m ; Tp=10s ; (T5) 0.1050 0.0643 0.0718
Hs=0.5m ; Tp=10s ; (T6) 0.0960 0.0649 0.0775
Hs=0.5m ; Tp=10s ; (T7) 0.1123 0.0657 0.0713
Hs=0.5m ; Tp=10s ; (T8) 0.0954 0.0638 0.0759

well the training data, is not necessary a good model on a dif-
ferent experiment (overfitting problem). In this paper, instead
of validating the identified model on a singular experiment, it
has been decided to stress the model with an intense group
of 7 validation tests. In this way, it is possible to obtain a
more complete overview regarding the ability of the model
in predicting the excitation force in different wave conditions.
Considering the triangular geometry, the models trained on
T1 are validated on all the other experiments T2...T8, with the
fitting results summarised in Table V. Fig. 16 shows the perfor-
mance of the models trained with experiment T1 and validated
with experiment T2. Analogous procedures have been done for
the circle and box, with the results shown in Table VI and VII.
In general, the models show the ability to predict a different
realization belonging to the same sea state or to another sea
state (the model trained with Hs = 1.5m behaves well also for
Hs = 0.5m). This indicates a parsimonious structure for the
models and a good estimate for the parameters. Furthermore, it
is possible to see that, in most cases, the nonlinear models (and
particularly the KGP model) are able to predict the excitation
force with more accuracy. Therefore, it is possible to conclude
that the problem under investigation includes nonlinearities,
and that the nonlinear identified models are able to describe
them.

In Fig. 17, the identified models from experiment T1 (tri-
angular geometry) have been also validated on an experiment
with a monochromatic wave of 0.1Hz. It can be seen that the
fully nonlinear NWT simulation exhibits an asymmetric out-
put, with respect to the MFSE, in response to the symmetrical

TABLE VI
NRMSE VALIDATION MULTI-STEP PERFORMANCES OF THE MODEL

TRAINED WITH THE EXPERIMENT C1 (CIRCLE).

Validation Experiment ARX Hammerstein KGP
Hs=1.5m ; Tp=10s ; (C2) 0.1216 0.1114 0.0887
Hs=1.5m ; Tp=10s ; (C3) 0.1374 0.1194 0.1224
Hs=1.5m ; Tp=10s ; (C4) 0.1311 0.1174 0.1115
Hs=0.5m ; Tp=10s ; (C5) 0.0722 0.0556 0.0545
Hs=0.5m ; Tp=10s ; (C6) 0.0730 0.0561 0.0533
Hs=0.5m ; Tp=10s ; (C7) 0.0718 0.0553 0.0547
Hs=0.5m ; Tp=10s ; (C8) 0.0726 0.0558 0.0534

TABLE VII
NRMSE VALIDATION MULTI-STEP PERFORMANCES OF THE MODEL

TRAINED WITH THE EXPERIMENT B1 (BOX).

Validation Experiment ARX Hammerstein KGP
Hs=1.5m ; Tp=10s ; (B2) 0.1278 0.1243 0.0934
Hs=1.5m ; Tp=10s ; (B3) 0.1317 0.1277 0.0984
Hs=1.5m ; Tp=10s ; (B4) 0.1383 0.1332 0.0992
Hs=0.5m ; Tp=10s ; (B5) 0.0747 0.0761 0.0662
Hs=0.5m ; Tp=10s ; (B6) 0.0805 0.0826 0.0692
Hs=0.5m ; Tp=10s ; (B7) 0.0771 0.0777 0.0691
Hs=0.5m ; Tp=10s ; (B8) 0.0769 0.0786 0.0665

sinusoidal η, owing to the fact that the triangle’s geometry is
asymmetric to respect to the MFSE. It is not possible for the
linear ARX model to replicate this nonlinear behaviour and
it is outperformed by the nonlinear models that are able to
replicate the asymmetric output. This is confirmed also in the
results in Table II and V, where the fitting of the ARX model
is poor, in particular for the sea state with Hs = 1.5m. This
is because the nonlinear effects, arising from the geometric
asymmetries, become more relevant with larger waves.

VI. CONCLUSION

Three different discrete time model structures have been
introduced to model the relationship between FSE and exci-
tation force, all linear with respect to the parameters, offering
the advantage of a convex optimisation for parameters that can
be easily solved.

The models were tested on three different geometries, and
the superiority of the nonlinear models (Hammerstein and
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Fig. 17. Model trained with experiment T1, and validated on monochromatic
experiment with f=0.1Hz.



KGP models) showed the nonlinear nature of the investigated
problem.

The linear ARX model exhibited strong limitations due to its
inability to generate asymmetry at its output, for a stimulation
with a symmetric input. The nonlinear models, on the other
hand, shown a very good ability in asymmetry generation.

The identified nonlinear models display good performance
both in training and validation, indicating that the selected
model structures, the estimated parameters and the identifi-
cation procedures are appropriate. Overall, the KGP model
behaves as the most accurate model, both in training and
validation.

ACKNOWLEDGMENT

This project is funded by Enterprise Ireland and is co-funded
by the Irish Government and the European Union under Ire-
lands EU Structural Funds Programme 2007- 2013 under grant
EI/CF/2011/1320

REFERENCES

[1] W. Cummins, “The impulse response function and ship motions,” DTIC
Document, Tech. Rep., 1962.

[2] J. Davidson, S. Giorgi, and J. V. Ringwood, “Numerical wave tank
identification of nonlinear discrete time hydrodynamic models,” RE-
NEW2014, 2014.

[3] J. Ringwood, G. Bacelli, and F. Fusco, “Energy-maximizing control of
wave-energy converters: The development of control system technology
to optimize their operation,” Control Systems, IEEE, vol. 34, no. 5, pp.
30–55, Oct 2014.

[4] P. Kracht, S. Perez-Becker, J.-B. Richard, and B. Fischer, “Performance
improvement of a point absorber wave energy converter by application
of an observer-based control: Results from wave tank testing.”

[5] P. Moraal and J. Grizzle, “Observer design for nonlinear systems with
discrete-time measurements,” Automatic Control, IEEE Transactions on,
vol. 40, no. 3, pp. 395–404, 1995.

[6] J. Ringwood, J. Davidson, and S. Giorgi, “Optimising numerical wave
tank tests for the parametric identification of wave energy device mod-
els,” in Prof. 34th Int. Conf. on Ocean, Offshore and Arctic Engineering
(OMAE). ASME, 2015.

[7] A. S. Zurkinden, F. Ferri, S. Beatty, J. P. Kofoed, and M. Kramer, “Non-
linear numerical modeling and experimental testing of a point absorber
wave energy converter,” Ocean Engineering, vol. 78, pp. 11–21, 2014.

[8] J. Falnes, “On non-causal impulse response functions related to propa-
gating water waves,” Applied Ocean Research, vol. 17, no. 6, pp. 379–
389, 1995.

[9] A. Babarit and P. Laporte-Weywada, “On the numerical modelling of
the nonlinear behaviour of a wave energy converter,” Proceedings of
OMAE2009, 2009.
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